Relativitätstheorie und Gravitation, affine Transformation, die den Abstand zweier Weltpunkte (Ereignisse)
invariant lässt und daher Inertialsysteme in Inertialsysteme überführt. Sie kann in der Form
parametrisiert werden, wobei die Matrix aufgrund der Invarianzforderung die Bedingung
erfüllen muss. Der Abstand zweier Ereignisse kann dabei
positiv, negativ oder null sein. Die Flächen sind Hyperboloide im Raum- und Zeitkontinuum,
die sich an den durch
definierten Lichtkegel anschmiegen. Die
Raumzeit zerfällt also in separierte, durch das Vorzeichen des Abstandes zweier
Weltpunkte charakterisierte Gebiete: die Region mit
heisst zeitartig, die mit
lichtartig und die mit
raumartig, wobei diese Regionen nicht durch
eine Lorentz-Transformation verbunden werden können.
Die spezielle Lorentz-Transformation zwischen zwei
Koordinatensystemen, die sich relativ zueinander entlang der räumlichen 1-Achse
mit der Geschwindigkeit bewegen, hat die explizite Gestalt
wobei und
.
lässt sich durch
parametrisieren; die zugehörige Matrix lautet
also
sie erzeugt einen Lorentz-Boost in x-Richtung. Er kann analog zu einer Drehung im euklidischen Raum auch als Pseudodrehung, bei der die Funktionen des Drehwinkels Hyperbelfunktionen sind, aufgefasst werden (siehe Abb.).
Entsprechend konstruiert man Lorentz-Boosts in y- und z-Richtung. Zwei hintereinander ausgeführte Boosts erzeugen aber keinen anderen reinen Boost, sondern zusätzlich eine räumliche Drehung; die allgemeinen Lorentz-Transformationen setzen sich also aus Boosts und Drehungen zusammen und bilden die Lorentz-Gruppe.
Lorentz-Transformation: Oben: Übergang von einem in ein
anderes Koordinatensystem in der euklidischen Ebene. Der Winkel a zwischen den
Achsen bleibt fest. Die Kurve mit dem Abstand ist ein Kreis mit Radius 1.
Unten: Eine spezielle Lorentz-Transformation (Boost) als
Pseudodrehung. Die Winkelhalbierende (Lichtkegel) zwischen den Achsen bleibt
fest. Die Kurven mit sind Hyperbeln.
Das freie Technik-Lexikon. Fundierte Informationen zu allen Fachgebieten der Ingenieurwissenschaften, für Wissenschaftler, Studenten, Praktiker & alle Interessierten. Professionell dargeboten und kostenlos zugängig.
TechniklexikonModernes Studium der Physik sollte allen zugängig gemacht werden.