Oberflächen- und Grenzflächenphysik
Die physikalischen Eigenschaften von Oberflächen und Grenzflächen unterscheiden sich oft grundlegend von den Volumeneigenschaften der betreffenden Substanzen. Ihre Erforschung stellt eine wichtige Herausforderung für Physik und Chemie dar, da eine Vielzahl von physikalischen, chemischen, biologischen und technischen Vorgängen durch Grenz- und Oberflächenphänomene bestimmt werden.
Die Begriffe Ober- und Grenzfläche
Eine exakte Definition des Begriffes »Oberfläche« gibt es nicht. Auch die Abgrenzung zwischen »Grenzfläche« und »Oberfläche« fällt relativ schwer. Im engen Sinne kann man unter »Oberfläche« die Grenzfläche zwischen kondensierter Materie und Vakuum, im weiteren Sinne die Grenzfläche als die Fläche, die zwei thermodynamische Phasen voneinander trennt, verstehen.
Welcher Teil eines
Körpers Oberfläche und welcher Volumen ist, hängt sehr stark von der
spezifischen Fragestellung ab. [81]Abb. 1 gibt eine grobe Übersicht über
die Zahl an Atomlagen, die sich bei verschiedenen physikalischen Erscheinungen
als Oberfläche verhalten. Analoge Überlegungen gelten auch für Grenzflächen als
»innere Oberflächen« zwischen zwei festen oder einer festen und einer flüssigen
Phase.
In jedem Fall sind
Grenz- und Oberflächen dadurch charakterisiert, dass es dort zu deutlichen
Abweichungen des physikalischen Verhaltens gegenüber dem im Volumen kommt. Da
der relative Anteil von Randatomen mit abnehmender Strukturgrösse stark zunimmt
(siehe [82]Abb. 2), wird das Verhalten von
Nanostrukturen unter Umständen ausschliesslich durch Oberflächeneffekte
bestimmt. So ist es denn auch ein Ziel der Nanotechnologie, durch Beherrschung
der kleinen Strukturen ganz neue »Materialklassen« zu konstruieren.
Beschreibung und Modellierung von Oberflächen
Wesentliche Parameter zur Beschreibung einer Oberfläche sind unter anderem
· die gruppentheoretische Beschreibung der Lage der Oberflächenatome analog zum Volumen eines Kristalls (die Symmetrien der Oberfläche, Oberflächenrekonstruktion),
· die Lage der Oberfläche zu den kristallographischen Achsen eines kristallinen Körpers; diese wird charakterisiert durch die kristallographische Richtung senkrecht zur Oberfläche,
· die Rauhigkeit der Oberfläche (z.B. Stufen, siehe [83]Abb. 3),
· die Lage von Korngrenzen relativ zur Oberfläche und
· die Belegung der Oberfläche mit Fremdatomen oder
-molekülen ([84]Abb. 4).
Zu diesen »allgemeinen« Kriterien kommen noch weitere, spezielle Oberflächeneigenschaften bei bestimmten Stoffgruppen hinzu, wie z.B. der Oberflächenmagnetismus.
Die gerade genannten Parameter allein sind bereits für eine sehr grosse Vielfalt an möglichen Oberflächenphänomenen verantwortlich, die in voller Allgemeinheit in keinem geschlossenen Modell erfasst werden können. Für die Modellierung sowie die experimentelle Untersuchung von Oberflächen ist man deshalb oft an möglichst einfachen, vollständig charakterisierbaren Systemen interessiert. Dies ist am besten gegeben für eine ebene, chemisch und physikalisch reine Oberfläche eines Einkristalls. Experimentell ist das Präparieren solcher Oberflächen allerdings oft mit einem grossen Aufwand verbunden (vgl. nächster Abschnitt).
Reine, ebene
Oberflächen werden über ein zweidimensionales Gitter beschrieben, dessen
Gittervektoren als Linearkombinationen von Gittervektoren des Volumens
dargestellt werden können (vgl. [85]Bild 5). Die Elementarzelle des
Oberflächengitters enthält eventuell mehr Atome als die Elementarzelle des
Volumens. Dies ist beispielsweise für Oberflächenrekonstruktionen mit grossen
Gittervektoren wie der Si(111)7x7 der Fall ([86]Abb. 6).
Experimentelle Verfahren zur Charakterisierung von Grenz- und Oberflächen
Bereitstellung und Erhaltung definierter Oberflächen
Viele Oberflächenphänomene werden bereits durch eine geringe Bedeckung mit Fremdatomen deutlich verändert. Um solche Phänomene beobachten zu können, ist es notwendig, eine Oberfläche möglichst frei von Verunreinigungen zu präparieren und über die Zeit des Experiments zu erhalten. Unter normalen atmosphärischen Bedingungen ist dies fast nie möglich, da selbst die Oberflächen von reaktionsträgen Substanzen innerhalb kürzester Zeit (< 10-6 s) durch eine Schicht von Molekülen bedeckt werden (Adsorption, Chemisorption).
Die Bildung derartiger Schichten ist um so langsamer,
· je weniger Moleküle pro Zeiteinheit auf der Oberfläche auftreffen und
· je geringer die Adsorptionswahrscheinlichkeit (Haftkoeffizient) der betreffenden Moleküle ist.
Ein Weg, die Anzahl der Stossfrequenz von Molekülen mit einer Oberfläche zu verringern, ist die Verminderung des Umgebungsdrucks. Bei der Arbeit im Ultrahochvakuum (UHV) wird die Stossrate der Moleküle mit der Oberfläche um 13 Grössenordnungen und mehr reduziert, so dass sich selbst bei einem Haftkoeffizienten von 1 erst nach Stunden eine vollständige Belegung der Oberfläche mit einer Monolage ausbildet. Experimente, bei denen man auf reine Oberflächen angewiesen ist, finden deshalb praktisch ausschliesslich im UHV statt. Die Herstellung der sauberen Oberflächen erfolgt ebenfalls im UHV, entweder durch Spalten eines Kristalls oder durch Entfernen der Absorbatschicht von ex-situ vorbereiteten Kristallen (beispielsweise durch »Absputtern« mit einem Ionenstrahl oder durch Tempern bei hohen Temperaturen).
Während
Adsorptionsvorgänge bei Experimenten mit reinen Oberflächen stören, kann die
quantitative Erfassung der Adsorption (z.B. in Form von Adsorptionsisothermen)
ihrerseits wiederum zur Charakterisierung von Oberflächen benutzt werden (z.B.
Bestimmung der »inneren Oberflächen« von porösen Trägermaterialien). Aus
Experimenten zur Desorption, der Umkehrung der Adsorption, kann man unter
kontrollierten Bedingungen wichtige Informationen über die Oberflächen erhalten
(Desorptionsspektroskopie). Des weiteren kann die Adsorption auch ausgenutzt
werden, das Wachstum von Materialien auf geeigneten Substraten gezielt zu
verändern (Surfactant).
Oberflächenanalyse mit Teilchenstrahlen
Viele wichtige Messmethoden der Oberflächenphysik arbeiten mit geladenen oder neutralen Teilchenstrahlen. Bei diesen Messverfahren ist das Arbeiten im UHV auch für die ungestörte Ausbreitung der Teilchen unverzichtbar. Geladene Teilchenstrahlen und Atomstrahlen haben den grossen Vorteil, dass die Reichweite der Strahlen innerhalb kondensierter Materie extrem kurz ist, so dass bei diesen Methoden tatsächlich nur Einflüsse der unmittelbaren Oberfläche registriert werden.
In der Oberflächenphysik sind Methoden mit Elektronenstrahlen besonders verbreitet, da sie stark mit Materie wechselwirken und relativ leicht in einem Energiebereich erzeugt werden können, in denen die De-Broglie-Wellenlänge in etwa interatomaren Abständen entspricht (Interferenzen von De-Broglie-Wellen):
· LEED (Low Energy Electron Diffraction); hier werden niederenergetische Elektronen (ca. 10-500 eV) auf die zu untersuchende Oberfläche geschossen und das Interferenzmuster der rückgestreuten Elektronen auf einem Fluoreszenz-Schirm abgebildet. Die Reichweite der niederenergetischen Elektronen beträgt in typischen Festkörpern weniger als 1 nm, und sie wechselwirken vornehmlich mit der äusseren Schale der Atomrümpfe (Valenzelektronen). LEED ist daher sehr empfindlich für die Struktur der Oberfläche.
· RHEED (Reflection High Energy Electron Diffraction):
Im Gegensatz zu LEED kommen hier höherenergetische Elektronen im Bereich von
etwa 10-50 keV zum Einsatz. Um trotz der grösseren Eindringtiefe solcher
Elektronen oberflächenselektiv zu bleiben, wird bei streifendem Einfall des
Elektronenstrahls gearbeitet. Im Gegensatz zu LEED, wo über einen sehr grossen
Raumwinkelbereich detektiert wird, genügt hier ein relativ kleiner Raumwinkel
für die Detektion der reflektierten Elektronen. RHEED ist deshalb als in
situ-Charakterisierungsmethode bei Epitaxie-Verfahren weit verbreitet ([87]Abb. 7).
· Auger-Elektronenspektroskopie: hier werden die auf
Grund des Auger-Effekts von der Probe emittierten Elektronen energieaufgelöst
analysiert. Da sich in den Auger-Spektren die Rumpfzustände der Elektronen in
einem Atom widerspiegeln, kann direkt auf die chemische Zusammensetzung der
Oberfläche geschlossen werden. Bei Ionisation der Oberflächenatome mit einem im
Bereich von 100 nm fein fokussierten Elektronenstrahl kann die chemische
Information über die Oberfläche auch ortsaufgelöst gewonnen werden ([88]Abb. 8). Auger-Übergänge sind vor
allem bei leichten Atomen die wahrscheinliche Form der Energieabgabe. Bei
Atomen mit hoher Kernladungszahl sind dagegen strahlende Röntgen-Übergänge
häufiger. Auch diese können analog zur Auger-Mikroskopie nach lokaler
Ionisation untersucht werden (EDX, Röntgenspektroskopie). Bei mittelschweren
Atomen können beide Verfahren angewandt werden. Der Vergleich der Ergebnisse
liefert wegen der unterschiedlichen Reichweite von Elektronen und
Röntgenphotonen eine zusätzliche Information über Variationen der chemischen
Zusammensetzung in einer Schicht von ca. 1 mm Dicke.
· EELS (Electron Energy Loss Spectroscopy, Elektronen-Energieverlustspektroskopie): Bestimmung des Energiespektrums der inelastisch gestreuten Elektronen. Die dadurch beobachteten Energieverluste der Elektronen zeigen charakteristische Werte, die durch die Struktur der Elektronenhülle sowie durch Schwingungen verursacht werden.
· Photoelektronenspektroskopie: Im Gegensatz zu den bisher diskutierten Verfahren werden hierbei keine rückgestreuten Elektronen untersucht, sondern die bei Einstrahlung von Licht (üblicherweise UV- (UPS), Röntgen- (XPS) oder Synchrotronstrahlung (SXPS)) auf Grund des Photoeffekts emittierten Elektronen. Diese Elektronen zeigen bei Anregung mit monochromatischem Licht eine charakteristische Energieverteilung, aus der nicht nur die elementare Zusammensetzung, sondern auch die chemischen Bindungsverhältnisse in der angeregten Oberflächenschicht bestimmt werden können. Deshalb werden Photoelektronenverfahren auch als Elektronenspektroskopie zur chemischen Analyse (ESCA) bezeichnet. Auch dieses Verfahren kann zu einem Bildgebungsverfahren ausgebaut werden (PEEM, Photoelektronen-Emissionsmikroskopie).
Verfahren mit Ionenstrahlen und Atomstrahlen sind komplizierter in der Realisierung, werden aber trotzdem häufig angewandt, da einerseits bei Atom- und Ionenstrahlen mit niedriger Energie eine sehr gute und spezifische Oberflächenselektivität gegeben ist und andererseits bei Ionenstrahlen mit hoher Energie durch den Channeling-Effekt eine sehr genaue Bestimmung von Orientierungswinkeln an der Oberfläche möglich ist.
Grundlegend andere Verhältnisse herrschen bei der Analyse von Oberflächen mit Photonenstrahlen: Die Reichweite von Photonen in einem Festkörper entspricht praktisch immer vielen Atomlagen. Dies ist bei Messungen an Grenzflächen unter Umständen von grossem Vorteil. Sind dagegen Effekte in den äussersten Atomlagen eines homogenen Körpers von Interesse, stört das Signal der tiefer liegenden »Volumen«-Schichten die Messung, es sei denn, man arbeitet mit schräg einfallenden Strahlen. Zur Analyse von Oberflächen finden vor allem infrarotes und sichtbares Licht im Rahmen von verschiedenen Reflexionsverfahren, mit denen unter anderem Schichtdicken von Adsorbatlagen und oberflächeninduzierte Veränderungen der Spektren der adsorbierten Moleküle detektiert werden können, Anwendung. Besonders verbreitet ist die Ellipsometrie, bei der die Drehung der Polarisationsebene von eingestrahltem Licht infolge des Brechungs- und Absorptionsverhaltens von Oberflächenschichten gemessen wird. Ellipsometrieverfahren können unter günstigen Bedingungen bereits Schichtdickenunterschiede weit unterhalb der Dicke einer Monolage detektieren.
Neben
Reflexionsverfahren finden im IR und sichtbaren Spektralbereich auch
Streumethoden zur Oberflächenanalyse Verwendung. Besonders interessant ist
dabei die oberflächenverstärkte Raman-Streuung (SERS) von Adsorbatschichten an
gut leitfähigen Metalloberflächen.
Rastersondenverfahren
Eine weitere Familie
von Messmethoden zur Charakterisierung von Oberflächen stellen Verfahren der
Rastersondenmikroskopie dar. Im einfachsten Verfahren liefern diese Methoden
rein topographische Informationen, wobei allerdings die Art der abgebildeten
Wechselwirkung bei der Interpretation der Topographie berücksichtigt werden
muss. Spektroskopische Messungen sind oft schwer zu interpretieren, tragen
jedoch zu einem Verständnis der Kontrastentstehung bei. Eine Vielzahl solcher
spektroskopischen und erweiterten Methoden ist mittlerweile demonstriert
worden; sie sind aber in der Handhabung deutlich aufwendiger als die einfache
Rasterkraftmikroskopie oder die Rastertunnelmikroskopie. Ausserdem kommen einige
von ihnen nur für bestimmte Arten von Proben in Frage. Die Aufnahme von
einfachen Topographien hat sich dagegen in den letzten Jahren zu einem sehr
wichtigen Routinewerkzeug in der Oberflächenphysik entwickelt.
Radiotracer-Verfahren
Verschiedene Effekte
beim Zerfall von radioaktiven Kernen sind von ihrer chemischen und/oder
magnetischen Umgebung abhängig (z.B. die gestörte g-g-Winkelkorrelation oder der Mössbauer-Effekt).
Bringt man solche Kerne in Grenz- oder Oberflächen ein, stellen sie eine
hochempfindliche Sonde für die Umgebung dar, in der sie eingebaut sind.
Problematisch bei der Anwendung von Radiotracer-Verfahren sind vor allem die
kurze Lebensdauer vieler Tracerisotope und die Schwierigkeit, die Tracerisotope
an der »richtigen« Stelle einzubauen, da sie in der Regel aus Preis- und
Strahlenschutzgründen nur in kleinen Mengen und in bestimmten chemischen
Verbindungen verfügbar sind.
Untersuchung von Grenzflächen
Bei Experimenten mit
Grenzflächen ist die »Zugänglichkeit« der interessierenden Schicht wesentlich
schlechter als bei Oberflächen, so dass Teilchenstrahlen (ausser Neutronen) und
Rastersondentechniken (ausser bei fest-flüssig-Grenzflächen) nur in seltenen
Fällen angewandt werden können. Damit kommen für die Untersuchung von
Grenzflächen vor allem Verfahren auf Basis von Photonen oder Radiotracern in
Betracht. Soweit es sich bei den interessierenden Grenzflächen nicht um glatte,
zweidimensionale Flächen handelt, sondern um innere Oberflächen in porösen
Medien (z.B. Aktivkohle, poröse Gläser ([89]Abb. 9), Zeolithe), ist der Anteil der
Materie im Bereich der Grenzfläche wesentlich grösser, so dass hier auch
Verfahren mit relativ geringer Nachweisempfindlichkeit wie z.B. die magnetische
Resonanz angewandt werden können.
Wichtige physikalische und chemische Phänomene an Grenz- und Oberflächen
Physikalisch gesehen sind Grenz- und Oberflächen von Festkörpern vor allem deshalb bedeutsam, weil sich die Oberflächenbandstrukturen deutlich von denen im Volumen unterscheiden.
Solche Unterschiede zwischen Volumen- und Oberflächenzuständen stellen bei der Realisierung neuer elektronischer Bauelemente mit immer kleineren Strukturgrössen ein wichtiges Problem dar. Das genaue Verständnis und die Kontrolle von Grenzflächenzuständen sind deshalb in der Nanotechnologie von enormer Wichtigkeit. Sie bestimmen beispielsweise entscheidend die Art und die Qualität von Metall-Halbleiterkontakten oder von Metall-Übergitterstrukturen, die beispielsweise zur Herstellung von GMR-Bauelementen (Riesenmagnetowiderstand) erzeugt werden.
An Grenzflächen von Halbleitern mit unterschiedlichen Energielücken bilden sich Bandverbiegungen aus, in denen sich bei geeigneten Dotierungsverhältnissen zweidimensionale Elektronen- oder Löchergase bilden können (Halbleiter-Heterostrukturen). Solche Systeme zeichnen sich durch sehr hohe Ladungsträgerbeweglichkeiten sowie durch eine besonders hohe Effektivität der strahlenden Rekombination von Ladungsträgern aus. Sie bilden deshalb die Grundlage für eine ganze Reihe von speziellen Halbleiterbauelementen wie Höchstfrequenztransistoren und Laserdioden. Ausserdem erlauben sie auch die Beobachtung von verschiedenen quantenmechanisch bedingten Effekten wie dem Quanten-Hall-Effekt und der Coulomb-Blockade.
Auch an einer Halbleiteroberfläche adsorbierte Moleküle können zusätzliche Ladungsträger in den Halbleiter einbringen oder aus diesem abziehen. Die dabei auftretenden Änderungen der Leitfähigkeit einer Halbleiterschicht können unter bestimmten Umständen für die Realisierung von chemischen Sensoren genutzt werden.
Auch eine Vielzahl von anderen physikalischen Eigenschaften (z.B. Reibung, Bruchverhalten) wird durch Oberflächeneigenschaften wesentlich mitbestimmt. Das Bruchverhalten einer Probe kann z.B. bereits durch weniger als eine Monolage Material an der Oberfläche stark verändert werden, sofern dieses das Eindringen von Versetzungen in das Material beeinflusst.
An Flüssigkeitsgrenzflächen werden wegen der Beweglichkeit sowohl der Moleküle als auch der Grenzfläche als solcher eine Reihe weiterer wichtiger Phänomene beobachtet wie beispielsweise die Oberflächenspannung und die Ausbildung von orientierten Schichten aus amphiphilen Molekülen (siehe auch weiter unten).
Extrem vielfältig und bedeutsam sind auch die chemischen Phänomene an Grenz- und Oberflächen:
· Kristallwachstum und Epitaxie: Das Aufwachsen von weiteren Lagen desselben oder eines anderen Stoffes an einer Grenzfläche oder Oberfläche hängt unter anderem von Phänomenen wie der Diffusion adsorbierter Teilchen an der Fläche, ihrem Haftungskoeffizienten sowie eventuell bei der Ausbildung der neuen Schicht auftretenden Verspannungen ab. Das Verständnis und die technische Kontrolle dieser Vorgänge spielen eine entscheidende Rolle bei der Weiterentwicklung von Epitaxieverfahren.
· Katalyse: Oberflächenadsorbierte Atome und Moleküle
besitzen eine andere elektronische Struktur und andere Korrelationszeiten als
in einer Gas- oder Flüssigphase. Dadurch unterscheidet sich auch ihr chemisches
Verhalten stark vom freien Zustand. Dieser Sachverhalt wird bei der
Oberflächenkatalyse ausgenutzt. Die genaue Charakterisierung der chemischen
Eigenschaften adsorbierter Substanzen an Katalysatoroberflächen sowie der bei
katalysierten Reaktionen auftretenden Elementarschritte stellt eine wichtige
Grundvoraussetzung für die Entwicklung neuer Katalysatormaterialien und die
Optimierung katalytischer Reaktionen dar. Bei vielen Katalysatormaterialien
kommt es durch die Wechselwirkung der adsorbierten Substanzen auch zu einer
Veränderung der Katalysatoroberfläche selbst (z.B. durch
Oberflächenrekonstruktion). Derartige Veränderungen der Oberfläche sind für
viele komplizierte Effekte im Zusammenhang mit katalytischen Reaktionen
(Gedächtniseffekte, wellenförmig verlaufende Reaktionsfronten auf der
Katalysatoroberfläche (siehe [90]Abb. 10), Materialverlustmechanismen
bei Katalysatoren etc.) verantwortlich. Ihre detaillierte Untersuchung ist
sowohl technisch als auch wissenschaftlich eine wichtige Herausforderung der
Oberflächenphysik.
· Elektrochemische Effekte: Bei elektrochemischen Vorgängen ist die Beschaffenheit der Elektrolyt-Festkörper-Grenzfläche von grösster Bedeutung: Adsorbatschichten an der Elektrode selbst sowie die Struktur der um die Elektrode herum gebildeten elektrischen Doppelschicht beeinflussen Überspannungen und andere Erscheinungen, die den Verlauf von Reaktionen in elektrochemischen Zellen oder auch bei Korrosionsvorgängen bestimmen.
· Micellen und Membranen: Solche Strukturen entstehen
durch die Interaktion von amphiphilen Molekülen mit Lösungsmitteln: Die
Moleküle richten sich so aus, dass die Grenzflächenenergie minimiert wird (siehe
[91]Abb. 11). Die hierdurch entstehenden
Gebilde sind von grösster biologischer und chemischer Bedeutung. Die Membranen
lebender Zellen bestehen beispielsweise aus einem derartigen »Lipid-Bilayer«,
der zusätzlich mit einer Reihe von Protein-Molekülen durchsetzt ist, die den
Transport verschiedener Stoffe durch die Membran kontrollieren können und so
beispielsweise gezielt Ladungsverschiebungen bewirken. Micellen sind vor allem
für die Herstellung von Emulsionen wichtig. Zusätzlich spielen sie eine immer
grössere Rolle als »Mikroreaktoren« für die Erzeugung von Nanostrukturen ([92]Abb. 12 zeigt in Micellen hergestellte
Cluster).
Trends und aktuelle Entwicklungen
Besonders wichtige
Impulse hat die Grenz- und Oberflächenphysik in den vergangenen Jahren vor
allem durch die Entwicklung immer neuer Verfahren der Rastersondenmikroskopie
bekommen. Auf der Basis dieser Methoden sind auch neue Strukturierungsverfahren
entstanden, die eine gezielte Manipulation einzelner Atome und Moleküle an
Oberflächen erlauben. Es ist davon auszugehen, dass die dadurch entstandenen
neuen Möglichkeiten sowohl in der Grundlagenforschung als auch im Zusammenhang
mit praktischen Anwendungen der Nanotechnologie in den kommenden Jahren eine
wesentliche Entwicklung der Oberflächenphysik darstellen werden. Ein anderes
wichtiges Entwicklungsfeld ist die Erarbeitung eines genaueren Verständnisses
von Fest-Flüssig-Grenzflächen und ihre gezielte Beeinflussung sowie die
Kontrolle der Bewegung von Flüssigkeitströpfchen auf der Nanometerskala. Von
einer derartigen »Nanofluidik« sind in den kommenden Jahren sowohl Impulse für
die Forschung als auch für die Kopplung zwischen mechanischer und
elektronischer Nanotechnologie auf der einen und chemischen Reaktionen auf der
anderen Seite zu erwarten (siehe [93]Abb. 13).
Literatur:
M. Henzler, W. Göpel: Oberflächenphysik des Festkörpers, Stuttgart 1991.
Ober- und Grenzflächenphysik 1: Typische Tiefenbereiche für verschiedene Oberflächenphänomene.
Ober- und Grenzflächenphysik 2: Relativer Anteil von Oberflächen- und Kantenatomen in einem würfelförmigen Kristall mit einer Gitterkonstanten von 0,33 nm als Funktion der Strukturgrösse.
Ober- und Grenzflächenphysik 3: STM-Aufnahme von Wolframoxid-Inseln auf einem Zirkonoxid-Substrat. Deutlich erkennbar ist die unregelmässige Form der Inseln sowie die Terrassen einzelner Kristallebenen (Bildausschnitt:50 nm ´ 50 nm, Quelle: Koslowski/Notz, Univ. Ulm).
Ober- und Grenzflächenphysik 4: CO-Inseln auf einer aufgelösten sauerstoffbedeckten Pt(111)-Oberfläche (Bildausschnitt: 12 nm × 12 nm, Tieftemperatur-STM-Aufnahme von J. Wintterlin, FHI Berlin).
Ober- und Grenzflächenphysik 5: Oberflächen-Gitterstrukturen für verschiedene Orientierungen eines kubisch-flächenzentrierten Kristalls mit idealer Oberfläche (d.h. ohne Rekonstruktion).
Ober- und Grenzflächenphysik 6: Si (111) 7X7 Rekonstruktion im STM mit eingezeichneten Gittervektoren (Quelle: Koslowski/Notz, Univ. Ulm).
Ober- und Grenzflächenphysik 7: RHEED-Beugungsbild einer Strontiumtitanat-Oberfläche zu Beginn des Aufwachsens von Ir. Die längliche Form dere Reflexe zeigt eine hohe Oberflächenrauhigkeit an (Quelle: Koslowski/Notz, Univ. Ulm).
Ober- und Grenzflächenphysik 8: Elektronenmikroskopbild (oben) und SAM-Bild (unten) der Bruchfläche eines Stahlwerkstücks. Der helle Bereich im unteren Bild zeigt das Vorkommen von Cr und S an. Der Rest der Oberfläche zeigt fast nur Auger-Signale von Fe. (Quelle: Physical Electronics GmbH, Ismaning)
Ober- und Grenzflächenphysik 9: Elektronenmikroskopische Aufnahme eines porösen Glases mit 10 nm Porengrösse. (Quelle: CPG Biotech Inc.)
Ober- und Grenzflächenphysik 10: Wandernde Spiralmuster der Reaktionsaktivität bei der katalytischen Oxidation von CO auf einer Pt (110)-Oberfläche. Die für die Musterbildung verantwortliche Nichtlinearität rührt von der adsorbatkonzentrationsabhängigen Veränderung der Oberflächenrekonstruktionen an der Pt-Oberfläche her. (PEEM-Aufnahme von H. Rotermund et al., FHI Berlin, Bildausschnitt: 400 mm ´ 400 mm)
Ober- und Grenzflächenphysik 11: Amphiphile Moleküle (oben) ordnen sich in bestimmten Konzentrationsbereichen in Lösung zu Micellen oder zu Membranen (»Bilayer«) an (unten), so dass ein energetisch günstiger Grenzflächenzustand erreicht wird.
Ober- und Grenzflächenphysik 12: Micellen als Mikroreaktoren: In Polymermicellen erzeugte Gold-Cluster a) bei schneller, b) bei langsamer Reaktionsführung (nur ein Cluster pro Micelle) unter dem Elektronenmikroskop. (Quelle: Göltner et al. 1999, MPI KG Golm)
Ober- und Grenzflächenphysik 13: Chemische Modellreaktion (Fe-Rhodanid-Reaktion) in benetzungskontrollierten Mikrokompartimenten, die während der Reaktion durch gegenseitiges Verdrehen von zwei Glasplatten mit benetzbaren Streifen aufgetrennt werden. (Quelle: Mönch/Herminghaus, Univ. Ulm 1999)
Das freie Technik-Lexikon. Fundierte Informationen zu allen Fachgebieten der Ingenieurwissenschaften, für Wissenschaftler, Studenten, Praktiker & alle Interessierten. Professionell dargeboten und kostenlos zugängig.
TechniklexikonModernes Studium der Physik sollte allen zugängig gemacht werden.